# Application of the Acetate of Baylis-Hillman Adducts in the Synthesis of 3-Carbomethoxy-2*H*-thiochromenes

Myeong Jong Cha, Young Seok Song, Eun-Gu Han and Kee-Jung Lee\*



A new route to 2H-thiochromenes using the tandem  $S_N 2'$  and  $S_N Ar$  reaction of several Baylis-Hillman acetates having an *ortho*-substituent, such as a halogen or nitro group, with sodium sulfide in aqueous dimethyl sulfoxide has been described.

J. Heterocyclic Chem., 45, 235 (2008).

Recently, several studies have examined thiochromene units, sulfur-containing analogues of benzopyran, because they demonstrate a wide range of biological activities. For instance, thiochromenes exhibit anti-inflammation [1], anti-HIV [2], antibacteria [3], anti-hyperplasia [4], anti-psychiatric [5] and anti-cancer [6] activities. Therefore, it is important to develop new and more efficient synthetic pathways to achieve a diverse array of thiochromene pharmacophores. The main synthetic route involves an initial condensation of thiophenols with acrylic acid derivatives, followed by reduction and dehydration [7], and a magnesium amide-induced sequential conjugate addition-Aldol type condensation reaction between 2mercaptoacetophenone and  $\alpha,\beta$ -unsaturated carboxylic acid derivatives and subsequent dehydration [8]. A similar method to produce chiral 2H-thiochromenes through tandem Michael-Aldol reactions between 2-mercaptobenzaldehyde and  $\alpha,\beta$ -unsaturated aldehydes has been reported [9]. In addition, several other synthetic methods are available such as reacting (2mercaptophenyl)methyltriphenylphosphonium bromide with  $\alpha$ -haloketones [10].

The Baylis-Hillman (BH) reaction has been the subject of recent reviews [11] and continues to elicit attention. Studies have focused on the  $S_N2'$  nucleophilic substitution of the BH adducts with a variety of nucleophiles. Many heterocycles have been synthesized including quinolines [12], dihydro-quinolines [13], quinolones [14], pyrrolidines [15], cumarines [16] and indoles [17]. It was reported that 2,2'-dithiodibenzaldehyde could be used as a masked thiosalicyl aldehyde in the BH reaction with activated alkenes in the presence of 1,8-diazabicyclo-[5,4,0]undec-7-ene (DBU) to give thiochromenes [18]. However, the most obvious drawback is that the

starting material of dithiodibenzaldehyde is not available commercially. In principle, compounds having the thiol group at the allylic position of 3-arylpropenoates after hydrolysis of the thiolester group might be extended further to build thiochromene derivatives via an intramolecular nucleophilic aromatic substitution reaction (S<sub>N</sub>Ar). However, after a hydrolysis reaction of 2-acetylthiomethylpropenoates, no traces of the intended allyl thiols were produced. Instead, symmetrical diallyl disulfides were produced via autooxidation of thiols [19] as shown in Scheme 1. At this stage, a one-pot procedure might be used to obtain 3-carbomethoxy-2H-thiochromenes using bisnucleophile sodium sulfide. We herein describe a new route to 2H-thiochromenes by the tandem  $S_N2$  nucleophilic substitution reaction, autooxidation of thiols, and intramolecular S<sub>N</sub>Ar nucleophilic substitution reaction of several BH acetates having orthosubstituents with sodium sulfide in an aqueous dimethyl sulfoxide.





CH<sub>2</sub>=CHCO<sub>2</sub>Me Ac<sub>2</sub>O DMAP DABCO, (HÕCH2CH2)3N D<sub>2</sub>Me CH2Cl2, r.t, 0.5-1 h neat, r.t , 22 h-15 d 83-93% 40-97% 1 2 Na<sub>2</sub>S DMSO/H<sub>2</sub>O CO<sub>2</sub>Me 'O<sub>2</sub>Me 40 °C, 10 min-36 h 20-43% 3 5 Na<sub>2</sub>S  $Na_2S$ DMSO/H<sub>2</sub>O DMSO/H<sub>2</sub>O 61-66% 52-71% 40 °C 40 °C, 5 min 20 min-1.5 h CO<sub>2</sub>Me MeO<sub>2</sub>C 4 f 1,2,3,4 d i l a b с g h k e j Х F Cl Br  $NO_2$ F  $NO_2$ Cl Cl Cl F Br Cl Y Н Η Η Η 5-MeO 5-MeO 3-C1 5-Cl 6-Cl 4,5-F<sub>2</sub> 4,5-OCH<sub>2</sub>O 5-NO<sub>2</sub> 5 b d a с e f g Y 6,7-F<sub>2</sub> 6,7-OCH<sub>2</sub>O Н 6-MeO 8-Cl 6-Cl 5-Cl

#### Table 1

3-Carbomethoxy-2H-thiochromenes 5a-g

| Entry | Reactant | Reaction Time | Product | Yield (%) |
|-------|----------|---------------|---------|-----------|
| 1     | 3a       | 1.5 h         | 5a      | 41        |
| 2     | 3b       | 3 h           | 5a      | 26        |
| 3     | 3c       | 1.5 h         | 5a      | 30        |
| 4     | 3d       | 10 min        | 5a      | 43        |
| 5     | 3e       | 2.5 h         | 5b      | 34        |
| 6     | 3f       | 1 h           | 5b      | 37        |
| 7     | 3g       | 30 min        | 5c      | 28        |
| 8     | 3h       | 2 h           | 5d      | 22        |
| 9     | 3i       | 36 h          | 5e      | 23        |
| 10    | 3ј       | 10 min        | 5f      | 20        |
| 11    | 3k       | 2.5 h         | 5g      | 23        |

Accordingly, BH acetates **3a-1** were synthesized as starting materials whose preparation has been previously described [19], except for **3e**, **3f**, **3h**, **3i** and **3k**. Treatment of BH acetate **3a** with 1.5 molar equivalents of sodium sulfide in aqueous dimethyl sulfoxide at 40 °C for 1.5 hours produced the desired 3-carbomethoxy-2*H*-

thiochromene 5a in a 41% yield after separation by column chromatography on silica gel. The spectral data of 5a were identical to reported infrared, <sup>1</sup>H and <sup>13</sup>C nmr spectral values [18]. This result led to the examination of the effect of the leaving group of the aromatic moiety. Table 1 summarizes the results of the synthesis of 3carbomethoxy-2H-thiochromenes. When the reactions of BH acetates bearing halogen and nitro leaving groups were conducted under similar reaction conditions, 3d containing a nitro group gave an acceptable yield (43%) of 5a. Meanwhile, in the cases of 3b,c with chloro and bromo groups, 5a was obtained in relatively lower yields (26% and 30%, respectively). Also, substituents ortho and/or para to the leaving group in the aromatic ring influenced the reaction. In general, the requirement of the presence of certain electron-withdrawing groups such as a halogen or nitro group ortho and/or para to the leaving group limits the generality of the S<sub>N</sub>Ar reaction by the addition-elimination mechanism. It did not work well with halogen-substituted compounds (Entries 7-10). Moreover, the reaction of nitro-substituted BH acetate 31 was not successful and only complex inseparable

Scheme 2

decomposition mixtures were obtained. However, the reactions of electron-donating methoxy-substituted BH acetates **3e** and **3f** led to relatively reasonable yields (34% and 37%, respectively) of **5b**, as shown in Table 1 (Entries 5 and 6). However, the BH acetate **3k** containing a methylenedioxy group produced a lower yield (23%) of **5g**.

Although the exact reaction mechanism has not yet been confirmed, we suggest that the conversion of 3 into 5 would appear to proceed through an S<sub>N</sub>2' nucleophilic substitution reaction with sulfide ion followed by the formation of diallyl disulfides 4 by autooxidation and a subsequent intramolecular S<sub>N</sub>Ar nucleophilic substitution reaction of allyl thiolate ion, which is generated from diallyl disulfide 4 by the attack of the sulfide ion. The easy oxidation of thiols on exposure to air is well known [20]. It is also known that autooxidation of thiols is accelerated by bases [21]. For example, in the course of the synthesis of 5b, careful examination of the reaction progress by thin layer chromatography (TLC) found that all starting BH acetate **3f** was converted to the diallyl disulfide 4f in a 66% yield within 5 minutes. Compared with the reference sample prepared according to the literature method [19], both products were identical. In addition, treatment of 4f with 1.5 molar equivalents of sodium sulfide in aqueous dimethyl sulfoxide at 40  $^{\circ}$ C for 1 hour gave the expected thiochromene **5b** in 52% yield. Also, several diallyl disulfides 4a, 4c, and 4d produced the 3-carbomethoxy-2H-thiochromene 5a in 59-71% yields under the same reaction conditions (Scheme 2).

In summary, we developed a new strategy for the synthesis of 3-carbomethoxy-2H-thiochromenes from easily accessible BH acetates and sodium sulfide. Although satisfactory results in product yields were not obtained, the efficacy of BH chemistry in heterocycle synthesis was demonstrated.

## EXPERIMENTAL

Silica gel 60 (70-230 mesh ASTM) used for column chromatography was supplied by E. Merck. Analytical thin layer chromatography (TLC) was performed on Merck silica gel 60  $F_{254}$  TLC plates. Melting points were measured by an Electrothermal melting point apparatus and were uncorrected. Microanalysis was obtained using a Thermo Electron Corporation Flash EA 1112 element analyzer. Infrared spectra were recorded with a Nicolet Magna 550 FTIR spectrometer. Electron impact (EI) mass spectra were obtained using a Jeol SX102 mass spectrometer. The <sup>1</sup>H and <sup>13</sup>C NMR spectra were measured on a Gemini 300 spectrometer using deuterio-chloroform. All chemical shifts are reported in parts per million relative to tetramethylsilane. The coupling constants (*J*) are expressed in Hertz.

The known BH adducts **2a-c**, **2f**, **2g**, **2j**, **2l** [19], **2d** [22], BH acetates **3a-c**, **3g**, **3j** [19], **3d** [22] and disulfides **4a**, **4c** [19] were prepared according to literature procedures.

Methyl 2-[(2-Fluoro-5-methoxyphenyl)(hydroxy)methyl]acrylate (2e). 1,4-Diazabicyclo[2,2,2]octane (DABCO) (0.22 g, 2 mmoles), triethanolamine (0.24 g, 1.6 mmole) and methyl acrylate (0.52 g, 6 mmoles) were added to a stirred solution of 2fluoro-5-methoxybenzaldehyde (1e, 0.31 g, 2 mmoles) at room temperature. After stirring for 48 hours the reaction mixture was diluted with water (20 ml) and extracted with dichloromethane  $(3 \times 50 \text{ ml})$ . The combined organic layers were dried over anhydrous magnesium sulfate, and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel that was eluted with hexane/ethyl acetate (5:1) to produce 0.45g (94%) of 2e as a white solid: mp 51-52 °C; ir (potassium bromide): 3502, 1709, 1636, 1498, 1439 cm<sup>-1</sup>; <sup>1</sup>H NMR (deuteriochloroform):  $\delta$  3.30 (d, J = 5.5 Hz, 1H), 3.76 (s, 3H), 3.79 (s, 3H), 5.73 (s, 1H), 5.84 (d, J = 5.5 Hz, 1H), 6.34 (s, 1H), 6.76-6.81 (m, 1H), 6.93-7.02 (m, 2H). Anal. Calcd. for C<sub>12</sub>H<sub>13</sub>FO<sub>4</sub>: C, 60.00; H, 5.45. Found: C, 59.72; H, 5.63.

**Methyl 2-[(2,5-Dichlorophenyl)(hydroxy)methyl]acrylate** (**2h**). DABCO (0.22 g, 2 mmoles), triethanolamine (0.24 g, 1.6 mmole) and methyl acrylate (0.52 g, 6 mmoles) were added to a stirred solution of 2,5-dichlorobenzaldehyde (**1h**, 0.35 g, 2 mmoles) at room temperature. After stirring for 22 hours, the aforementioned procedure was followed to produce **2h**. Yield: 0.51 g (97%); colorless oil; ir (dichloromethane): 3437, 1720, 1631, 1462, 1440 cm<sup>-1</sup>; <sup>1</sup>H NMR (deuteriochloroform):  $\delta$  3.30 (d, J = 4.6 Hz, 1H), 3.81 (s, 3H), 5.57 (s, 1H), 5.92 (d, J = 4.6 Hz, 1H), 6.36 (s, 1H), 7.21-7.31 (m, 2H), 7.58 (d, J = 2.4 Hz, 1H). *Anal.* Calcd. for C<sub>11</sub>H<sub>10</sub>Cl<sub>2</sub>O<sub>3</sub>: C, 50.60; H, 3.86. Found: C, 50.71; H, 3.93.

**Methyl 2-[(2,6-Dichlorophenyl)(hydroxy)methyl]acrylate** (2i). DABCO (0.22 g, 2 mmoles), triethanolamine (0.24 g, 1.6 mmole), and methyl acrylate (0.52 g, 6 mmoles) were added to a stirred solution of 2,6-dichlorobenzaldehyde (1i, 0.35 g, 2 mmoles) at room temperature. After stirring for 27 hours, the aforementioned procedure was followed to produce 2i. Yield: 0.31 g (60%); white solid; mp: 74.5-75.5 °C; ir (potassium bromide): 3500, 1706, 1634, 1577, 1560, 1434 cm<sup>-1</sup>; <sup>1</sup>H NMR (deuteriochloroform): δ 3.34 (d, J = 8.2 Hz, 1H), 3.75 (s, 3H), 5.78 (s, 1H), 6.35 (d, J = 8.2 Hz, 1H), 6.41 (s, 1H), 7.18 (dd, J = 8.5 and 7.2 Hz, 1H), 7.32 (d, J = 7.2 Hz, 1H), 7.33 (d, J = 8.5 Hz, 1H). *Anal*. Calcd. for C<sub>11</sub>H<sub>10</sub>Cl<sub>2</sub>O<sub>3</sub>: C, 50.60; H, 3.86. Found: C, 50.84; H, 4.01.

Methyl 2-[(2-Bromo-4,5-methylenedioxy)(hydroxy)methyl]-acrylate (2k). DABCO (0.22 g, 2 mmoles), triethanolamine (0.24 g, 1.6 mmole) and methyl acrylate (0.52 g, 6 mmoles) were added to a stirred solution of 2-bromo-4,5-methlenedioxybenzaldehyde (1k, 0.46 g, 2 mmoles) at room temperature. After stirring for 15 days, the aforementioned procedure was followed to produce 2k. Yield: 0.25 g (40%); colorless oil; ir (dichloromethane): 3434, 1721, 1629, 1502, 1478 cm<sup>-1</sup>; <sup>-1</sup>H NMR (deuteriochloroform): δ 3.14 (d, J = 4.0 Hz, 1H), 3.79 (s, 3H), 5.62 (s, 1H), 5.86 (d, J = 4.0 Hz, 1H), 5.99 (s, 2H), 6.35 (s, 1H), 7.00 (s, 1H), 7.02 (s, 1H). Anal. Calcd. for C<sub>12</sub>H<sub>11</sub>BrO<sub>5</sub>: C, 45.74; H, 3.52. Found: C, 45.90; H, 3.77.

**Preparation of BH Acetates 3: General Procedure.** Acetic anhydride (3 mmoles) and 4-(dimethylamino)pyridine (0.4 mmoles) were added to a stirred solution of BH adduct **2** (2 mmoles) in dichloromethane (5 ml) at room temperature. After stirring for 10-40 minutes the reaction mixture was diluted with water (20 ml) and extracted with dichloromethane ( $3 \times 50$  ml). The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated *in vacuo*. The

resulting mixture was chromatographed on silica gel and eluted with hexane/ethyl acetate (3:1) to produce **3** as an oil or solid.

The physical and spectral data of **3** prepared by this general method follows.

**Methyl 2-[Acetoxy(2-fluoro-5-methoxyphenyl)methyl]**acrylate (3e). Reaction time: 10 minutes; white solid; yield: 83%; mp: 53 °C; ir (potassium bromide): 1750, 1728, 1635, 1596, 1501, 1227 cm<sup>-1</sup>; <sup>1</sup>H NMR (deuteriochloroform):  $\delta$  2.12 (s, 3H), 3.74 (s, 3H), 3.77 (s, 3H), 5.82 (s, 1H), 6.46 (s, 1H), 6.78-6.85 (m, 2H), 6.89 (s, 1H), 6.95-7.02 (m, 1H). *Anal.* Calcd. for C<sub>14</sub>H<sub>15</sub>FO<sub>5</sub>: C, 59.57; H, 5.36. Found: C, 59.68; H, 5.22.

Methyl 2-[Acetoxy(5-methoxy-2-nitrophenyl)methyl]acrylate (3f). Reaction time: 30 minutes; white solid; yield: 89%; mp: 93.5-94.5 °C; ir (potassium bromide): 1747, 1716, 1638, 1614, 1581, 1515, 1231 cm<sup>-1</sup>; <sup>1</sup>H NMR (deuteriochloroform): δ 2.15 (s, 3H), 3.80 (s, 3H), 3.91 (s, 3H), 5.48 (s, 1H), 6.41 (s, 1H), 6.93 (dd, J = 9.2 and 2.7 Hz, 1H), 7.04 (d, J = 2.7Hz, 1H), 7.40 (s, 1H), 8.19 (d, J = 9.2 Hz, 1H). Anal. Calcd. for C<sub>14</sub>H<sub>15</sub>NO<sub>7</sub>: C, 54.37; H, 4.89; N, 4.53. Found: C, 54.49; H, 4.78; N, 4.84.

**Methyl 2-[Acetoxy(2,5-dichlorophenyl)methyl]acrylate** (**3h**). Reaction time: 25 minutes; white solid; yield: 93%; mp: 60-61 °C; ir (potassium bromide): 1748, 1711, 1635, 1465, 1440, 1295, 1225 cm<sup>-1</sup>; <sup>1</sup>H NMR (deuteriochloroform):  $\delta$  2.14 (s, 3H), 3.76 (s, 3H), 5.69 (s, 1H), 6.59 (s, 1H), 6.97 (s, 1H), 7.24 (dd, J = 8.5 and 2.4 Hz, 1H), 7.32 (d, J = 2.4 Hz, 1H), 7.33 (d, J = 8.5 Hz, 1H). *Anal.* Calcd. for C<sub>13</sub>H<sub>12</sub>Cl<sub>2</sub>O<sub>4</sub>: C, 51.51; H, 3.99. Found: C, 51.36; H, 3.85.

**Methyl 2-[Acetoxy(2,6-dichlorophenyl)methyl]acrylate** (**3i**). Reaction time: 30 minutes; colorless oil; yield: 87%; ir (dichloromethane): 1747, 1727, 1580, 1563, 1436, 1229 cm<sup>-1</sup>; <sup>1</sup>H NMR (deuteriochloroform):  $\delta$  2.13 (s, 3H), 3.75 (s, 3H), 5.73 (s, 1H), 6.49 (s, 1H), 7.19 (dd, J = 8.7 and 7.3 Hz, 1H), 7.31-7.33 (m, 3H). *Anal*. Calcd. for C<sub>13</sub>H<sub>12</sub>Cl<sub>2</sub>O<sub>4</sub>: C, 51.51; H, 3.99. Found: C, 51.63; H, 3.75.

Methyl 2-[Acetoxy(2-bromo-4,5-methylenedioxy)methyl]acrylate (3k). Reaction time: 40 minutes; colorless oil; yield: 86%; ir (dichloromethane): 1740, 1712, 1636, 1504, 1484, 1233 cm<sup>-1</sup>; <sup>1</sup>H NMR (deuteriochloroform): δ 2.12 (s, 3H), 3.76 (s, 3H), 5.67 (s, 1H), 5.99 (s, 2H), 6.46 (s, 1H), 6.82 (s, 1H), 6.91 (s, 1H), 7.03 (s, 1H). *Anal.* Calcd. for C<sub>14</sub>H<sub>13</sub>BrO<sub>6</sub>: C, 47.08; H, 3.67. Found: C, 47.22; H, 3.81.

**Preparation of 3-Carbomethoxy-2H-thiochromenes 5: General Procedure.** Sodium sulfide (3 mmoles) was added to a stirred solution of BH acetate **3** (2 mmoles) in aqueous dimethyl sulfoxide (7.7 ml, v/v= 10/1) at 40 °C. After stirring for the time indicated in Table 1, the reaction mixture was diluted with water (20 ml) and extracted with diethyl ether (3 × 50 ml). The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated *in vacuo*. The resulting mixture was chromatographed on silica gel and eluted with hexane/ethyl acetate (10:1) to produce **5** as an oil or solid.

The physical and spectral data of **5** prepared by this general method follow.

**3-Carbomethoxy-2***H***-thiochromene (5a).** [18] Compound **5a** was obtained from BH acetates **3a-d** in 41, 26, 30 and 43% yields, respectively. Yellow solid; mp 34.5-35.5 °C; ir (potassium bromide): 1707, 1631, 1586, 1558, 1436, 1239 cm<sup>-1</sup>; <sup>1</sup>H NMR (deuteriochloroform):  $\delta$  3.74 (d, *J* = 1.2 Hz, 2H), 3.85 (s, 3H), 7.10-7.28 (m, 4H), 7.55 (s, 1H); <sup>13</sup>C NMR (deuteriochloroform):  $\delta$  24.0, 52.2, 123.0, 125.8, 127.1, 130.2, 130.6, 131.3, 134.0, 137.4, 166.4.

**3-Carbomethoxy-6-methoxy-2H-thiochromene** (5b). Compound **5b** was obtained from BH acetates **3e** and **3f** in yields of 34% and 37%, respectively. Yellow solid; mp 38-39 °C; ir (potassium bromide): 1706, 1631, 1595, 1560, 1235 cm<sup>-1</sup>; <sup>1</sup>H NMR (deuteriochloroform):  $\delta$  3.70 (d, J = 1.2 Hz, 2H), 3.80 (s, 3H), 3.84 (s, 3H), 6.79-6.83 (m, 2H), 7.18-7.21 (m, 1H), 7.52 (s, 1H); <sup>13</sup>C NMR (deuteriochloroform):  $\delta$  24.2, 52.2, 55.4, 115.6, 116.3, 124.0, 124.5, 128.0, 132.3, 137.4, 157.8, 166.3. *Anal.* Calcd. for C<sub>12</sub>H<sub>12</sub>O<sub>3</sub>S: C, 61.00; H, 5.12; S, 13.57. Found: C, 60.77; H, 5.02; S, 13.74.

**3-Carbomethoxy-8-chloro-2H-thiochromene (5c).** Yellow solid; yield: 28%; mp: 88-89 °C; ir (potassium bromide): 1698, 1645, 1439, 1415, 1250, 1220 cm<sup>-1</sup>; <sup>1</sup>H NMR (deuteriochloroform):  $\delta$  3.78 (d, 2H, J = 0.9 Hz, 2H), 3.86 (s, 3H), 7.06 (t, J = 7.6 Hz, 1H), 7.15 (dd, J = 7.6 and 1.5 Hz, 1H), 7.29 (dd, J = 7.6 and 1.5 Hz, 1H), 7.53 (s, 1H); <sup>13</sup>C NMR (deuteriochloroform):  $\delta$  24.2, 52.4, 123.2, 125.7, 128.8, 130.9, 131.7, 132.8, 133.9, 137.0, 166.0. *Anal.* Calcd. for C<sub>11</sub>H<sub>9</sub>ClO<sub>2</sub>S: C, 54.89; H, 3.77; S, 13.32. Found: C, 54.71; H, 3.75; S, 13.18.

**3-Carbomethoxy-6-chloro-2H-thiochromene (5d).** Yellow solid; yield: 22%; mp: 75-76 °C; ir (potassium bromide): 1705, 1631, 1464, 1435, 1235 cm<sup>-1</sup>; <sup>1</sup>H NMR (deuteriochloroform):  $\delta$  3.73 (d, J = 1.2 Hz, 2H), 3.85 (s, 3H), 7.15-7.23 (m, 3H), 7.48 (s, 1H); <sup>13</sup>C NMR (deuteriochloroform):  $\delta$  23.9, 52.3, 124.3, 128.1, 129.8, 129.9, 131.2, 132.3, 132.7, 136.1, 166.0. *Anal.* Calcd. for C<sub>11</sub>H<sub>9</sub>ClO<sub>2</sub>S: C, 54.89; H, 3.77; S, 13.32. Found: C, 54.82; H, 3.51; S, 13.54.

**3-Carbomethoxy-5-chloro-2H-thiochromene** (5e). Yellow oil; yield: 23%; ir (dichloromethane): 1712, 1629, 1591, 1579, 1433, 1240 cm<sup>-1</sup>; <sup>1</sup>H NMR (deuteriochloroform):  $\delta$  3.69 (d, J = 0.9 Hz, 2H), 3.87 (s, 3H), 7.09-7.23 (m, 3H), 7.97 (s, 1H); <sup>13</sup>C NMR (deuteriochloroform):  $\delta$  23.6, 52.4, 124.4, 125.7, 126.8, 129.2, 130.2, 133.2, 135.4, 136.9, 166.1. *Anal.* Calcd. for C<sub>11</sub>H<sub>9</sub>ClO<sub>2</sub>S: C, 54.89; H, 3.77; S, 13.32. Found: C, 54.68; H, 3.97; S, 13.14.

**3-Carbomethoxy-6,7-difluoro-2***H***-thiochromene (5f).** Yellow solid; yield: 20%; mp: 76-77 °C; ir (potassium bromide): 1695, 1582, 1490, 1438, 1253 cm<sup>-1</sup>; <sup>1</sup>H NMR (deuteriochloroform):  $\delta$  3.72 (s, 2H), 3.85 (s, 3H), 7.04-7.13 (m, 2H), 7.45 (s, 1H); <sup>13</sup>C NMR (deuteriochloroform):  $\delta$  23.8, 52.4, 115.8, 116.1, 118.7, 118.9, 123.5, 128.0, 135.6, 149.0, 149.1, 150.1, 152.3, 166.0. *Anal.* Calcd. for C<sub>11</sub>H<sub>8</sub>F<sub>2</sub>O<sub>2</sub>S: C, 54.54; H, 3.33; S, 13.24. Found: C, 54.37; H, 3.43; S, 13.38.

**3-Carbomethoxy-6,7-methylenedioxy-2H-thiochromene** (**5g**). Yellow solid; yield: 23%; mp: 103-104 °C; ir (potassium bromide): 1692, 1609, 1584, 1499, 1481, 1242 cm<sup>-1</sup>; <sup>1</sup>H NMR (deuteriochloroform):  $\delta$  3.68 (d, J = 0.9 Hz, 2H), 3.83 (s, 3H), 5.97 (s, 2H), 6.74 (s, 1H), 6.78 (s, 1H), 7.44 (s, 1H); <sup>13</sup>C NMR (deuteriochloroform):  $\delta$  24.1, 52.1, 101.5, 107.6, 110.2, 120.4, 125.4, 127.9, 137.3, 146.2, 149.1, 166.5. *Anal.* Calcd. for C<sub>12</sub>H<sub>10</sub>O<sub>4</sub>S: C, 57.59; H, 4.03; S, 12.81. Found: C, 57.78; H, 4.26; S, 12.57.

#### Preparation of Diallyl Disulfides 4.

#### Method A.

(2Z,2'Z)-Dimethyl 2,2'-Disulfanediylbis-(methylene)bis[3-(2-nitrophenyl)acrylate] (4d). Sodium sulfide (0.23 g, 3 mmoles) was added to a stirred solution of BH acetate 3d (0.56 g, 2 mmoles) in aqueous dimethyl sulfoxide (7.7 ml, v/v=10/1) at 40°C. After stirring for 5 minutes, the reaction mixture was diluted with water (20 ml) and extracted with diethyl ether (3 × 50 ml). The combined organic layers were dried over anhydrous magnesium sulfate, and the solvent was evaporated *in vacuo*. The resulting mixture was chromatographed on silica gel and eluted with hexane/ethyl acetate (3:1) to produce 0.31 g (61%) of **4d** as a white solid: mp: 142-143 °C; ir (potassium bromide): 1710, 1604, 1530, 1435, 1353, 1272, 1259 cm<sup>-1</sup>; <sup>1</sup>H NMR (deuteriochloroform):  $\delta$  3.43 (s, 2H), 3.82 (s, 3H), 7.47-7.57 (m, 2H), 7.66-7.71 (m, 1H), 7.93 (s, 1H), 8.13-8.17 (m, 1H); <sup>13</sup>C NMR (deuteriochloroform):  $\delta$  30.0, 52.4, 125.0, 130.0, 130.3, 130.7, 131.1, 133.8, 137.8, 147.4, 166.7; ms: m/z (%) No M<sup>+</sup>, 486 (21), 337 (17), 250 (100), 218 (82), 188 (59), 164 (58). *Anal.* Calcd. for C<sub>22</sub>H<sub>20</sub>N<sub>2</sub>O<sub>8</sub>S<sub>2</sub>: C, 52.37; H, 4.00; N, 5.55; S, 12.71. Found: C, 52.52; H, 3.86; N, 5.63; S, 12.54.

(2Z,2'Z)-Dimethyl 2,2'-Disulfanediylbis(methylene)bis[3-(5-methoxy-2-nitrophenyl)acrylate] (4f). Sodium sulfide (0.23 g, 3 mmoles) was added to a stirred solution of BH acetate 3f (0.62 g, 2 mmoles) in aqueous dimethyl sulfoxide (7.7 ml, v/v= 10/1) at 40 °C. After stirring for 5 minutes, the aforementioned procedure was followed to produce 0.37 g (66%) of 4f as a white solid: mp: 165-166 °C; ir (potassium bromide): 1713, 1600, 1585, 1508, 1242 cm<sup>-1</sup>; <sup>1</sup>H NMR (deuteriochloroform):  $\delta$  3.45 (s, 2H), 3.82 (s, 3H), 3.93 (s, 3H), 6.93 (d, J = 2.4 Hz, 1H), 6.98 (dd, J = 9.2 and 2.4 Hz, 1H), 7.97 (s, 1H), 8.21 (d, J = 9.2 Hz)1H); <sup>13</sup>C NMR (deuteriochloroform):  $\delta$  30.2, 52.4, 56.2, 115.2, 127.6, 129.7, 133.6, 138.8, 138.9, 140.2, 163.5, 166.7; ms: m/z (%) No M<sup>+</sup>, 472 (2), 426 (42), 252 (19), 220 (98), 188 (100), 134 (100), 115 (54). Anal. Calcd. for  $C_{24}H_{24}N_2O_{10}S_2$ : C, 51.06; H, 4.28; N, 4.96; S, 11.36. Found: C, 51.27; H, 4.20; N, 4.73; S, 11.55.

### Method B [19].

(2Z,2'Z)-Dimethyl 2,2'-Disulfanediylbis(methylene)bis[3-(2-nitrophenyl)acrylate] (4d). Thiolacetic acid (0.17 g, 2.2 mmoles) and triethylamine (0.24 g, 2.4 mmoles) were added to a stirred solution of 3d (0.56 g, 2 mmoles) in dichloromethane (5 ml) at room temperature. After stirring for 30 minutes, the reaction mixture was diluted with water (5 ml) and extracted with dichloromethane  $(2 \times 10 \text{ ml})$ . The combined organic layers were dried over anhydrous magnesium sulfate, and the solvent was evaporated in vacuo. The resulting crude product, methyl (Z)-2-(acetylthiomethyl)-3-(2-nitrophenyl)acrylate, was dissolved in 50% aqueous acetone (10 ml), and NaN<sub>3</sub> (0.20 g, 3 mmoles) was added and stirred at reflux temperature for 4 hours. The reaction mixture was concentrated under reduced pressure, and the residue was extracted with dichloromethane ( $2 \times 10$  ml). The organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The reaction mixture was chromatographed on silica gel and eluted with hexane/ethyl acetate (10:1) to produce 0.31 g (62%) of 4d as a white solid. The melting point and spectral data were identical to those of the 4d obtained from method A.

(2Z,2'Z)-Dimethyl 2,2'-Disulfanediylbis(methylene)bis[3-(5-methoxy-2-nitrophenyl)acrylate] (4f). Thiolacetic acid (0.17 g, 2.2 mmoles) and triethylamine (0.24 g, 2.4 mmoles) were added to a stirred solution of 3f (0.62 g, 2 mmoles) in dichloromethane (5 ml) at room temperature. After stirring for 30 minutes, the reaction mixture was diluted with water (5 ml) and extracted with dichloromethane (2 × 10 ml). The combined organic layers were dried over anhydrous magnesium sulfate, and the solvent was evaporated *in vacuo*. The resulting crude product, methyl (Z)-2-(acetylthiomethyl)-3-(2-nitrophenyl)acrylate, was dissolved in 50% aqueous acetone (10 ml), and NaN<sub>3</sub> (0.20 g, 3 mmoles) was added and stirred at reflux temperature for 4 hours. The reaction mixture was concentrated under reduced pressure, and the residue was extracted with dichloromethane (2 × 10 ml). The organic layers were dried over anhydrous magnesium sulfate, and the solvent was evaporated *in vacuo*. The reaction mixture was chromatographed on silica gel and eluted with hexane/ethyl acetate (10:1) to produce 0.41 g (72%) of **4f** as a white solid. The melting point and spectral data were identical to those of the **4f** obtained from method A.

Synthesis of Thiochromenes 5 from Diallyl Disulfide 4: General Procedure. Sodium sulfide (3 mmoles) was added to a stirred solution of diallyl disulfides 4a, c, d, f (2 mmoles) in aqueous dimethyl sulfoxide (11 ml, v/v= 10/1) at 40 °C. After stirring for 20 minutes to 1.5 hours, the reaction mixture was diluted with water (20 ml) and extracted with diethyl ether (3 × 50 ml). The combined organic layers were dried over anhydrous magnesium sulfate, and the solvent was evaporated *in vacuo*. The resulting mixture was chromatographed on silica gel and eluted with hexane/ethyl acetate (10:1) to produce 5a or 5b as a solid.

Spectroscopic data were identical to the **5a** or **5b** obtained from the one-pot procedure. For **4a**, reaction time: 1.5 hours; yield: 60%. For **4c**, reaction time: 1 hour, yield: 58%. For **4d**, reaction time: 20 minutes, yield: 71%. For **4f**, reaction time: 1 hour, yield: 52%.

**Acknowledgement.** This work was supported by the Research Fund of Hanyang University (HY-2006-I).

#### **REFERENCES AND NOTES**

\* Author to whom correspondence should be addressed.

[1a] Rogier, D. J. Jr.; Carter, J. S.; Talley, J. J. WO 2001049675,
2001; *Chem. Abstr.* 2001, *135*, 107252. [b] Carter, J. S.; Devadas, B.;
Talley, J. J.; Brown, D. L.; Graneto, M. J.; Rogier, D. J. Jr.; Nagarajan,
S. R.; Korte, C. E.; Bertenshaw, S. R.; Obukowicz, M. G. WO
2000023433, 2000; *Chem. Abstr.* 2000, *132*, 293665.

[2] Kaye, P. T.; Musa, M. A.; Nchinda, A. T.; Nocanda, X. W. Synth. Commun. 2004, 34, 2575.

[3] Brown, M. J.; Carter, P. S.; Fenwick, A. E.; Fosberry, A. P.; Hamprecht, D. W.; Hibbs, M. J.; Jarvest, R. L.; Mensah, L.; Milner, P. H.; O'Hanlon, P. J.; Pope, A. J.; Richardson, C. M.; West, A.; Witty, D. R. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 3171.

[4] Quaglia, W.; Pigini, M.; Piergentili, A.; Giannella, M.; Gentili, F.; Marucci, G.; Carrieri, A.; Carotti, A.; Poggesi, E.; Leonardi, A.; Melchiorre, C. *J. Med. Chem.* **2002**, *45*, 367.

[5] van Vliet, L. A.; Rodenhuis, N.; Dijkstra, D.; Wikstrom, H.; Pugsley, T. A.; Serpa, K. A.; Meltzer, L. T.; Heffner, T. G.; Wise, L. D.; Lajiness, M. E.; Huff, R. M.; Svensson, K.; Sundell, S.; Lundmark, M. J. Med. Chem. 2000, 43, 2871.

[6a] Berlin, K. D.; Benbrook, D. M.; Nelson, E. C. U. S. Patent
6586460, 2003; *Chem. Abstr.* 2004, *139*, 69392. [b] Sugita, Y.; Hosoya,
H.; Terasawa, K.; Yokoe, I.; Fujisawa, S.; Sakagami, H. *Anticancer Res.*2001, *21*, 2629.

[7a] Tércio, J.; Ferreira, B.; Catani, V.; Comasseto, J. V. Synthesis
1987, 149. [b] Ingall, A. H. In *Comprehensive Heterocyclic Chemistry*, Boulton, A. J.; Mckillop, A. Eds, Pergamon Press, Oxford, 1984, Vol 3, p 934.

[8] Kobayashi, K.; Konishi, H.; Kitamura, T.; Morikawa, O.; Nakahashi, R. J. Chem. Soc., Perkin Trans. 1 1999, 1547.

[9a] Wang, W.; Li, H.; Wang, J.; Zu, L. J. Am. Chem. Soc. 2006,
 128, 10354. [b] Rios, R.; Sunden, H.; Ibrahem, I.; Zhao, G. -L.;
 Eriksson, L.; Córdova, A. Tetrahedron Lett. 2006, 47, 8547.

[10] Arnoldi, A.; Carughi, M. Synthesis 1988, 155.

[11a] Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653.

[b] Basavaiah, D.; Rao, P. D.; Hyma, R. S. *Tetrahedron* **1996**, *52*, 8001.
[c] Kim, J. N.; Lee, K. Y. *Curr. Org. Chem.* **2002**, *6*, 627. [d] Basavaiah,
D.; Rao, A. J.; Satyanarayana, T. *Chem. Rev.* **2003**, *103*, 811. [e]
Ciganek, E. In *Organic Reactions*, Paquette, L. A. Ed, Wiley, New York, 1997, Vol. 51, pp 201-350.

[12a] Chung, Y. M.; Lee, H. J.; Hwang, S. S.; Kim, J. N. *Bull. Korean Chem.* Soc. **2001**, 22, 799. (b) Kim, J. N.; Lee, H. J.; Lee, K. Y.; Kim, S. K. *Tetrahedron Lett.* **2001**, *42*, 3737. (c) Kim, J. N.; Chung, Y. M.; Im, Y. J. *Tetrahedron Lett.* **2002**, *43*, 6209.

[13a] Kim, J. N.; Kim, H. S.; Gong, H. G.; Chung, Y. M. *Tetrahedron Lett.* **2001**, *42*, 8341. (b) Yi, H. -W.; Park, H. W.; Song, Y. S.; Lee, K. -J. *Synthesis* **2006**, 1953.

[14a] Basavaiah, D.; Reddy, R. M.; Kumaragurubaran, N.; Sharada, D. S. *Tetrahedron* **2002**, *58*, 3693. (b) Familoni, O. B.; Kaye, P. T.; Klass, P. J. *Chem. Commun.* **1998**, *24*, 2563. (c) Kim, J. N.; Lee, K. Y.; Kim, H. S.; Kim, T. Y. *Org. Lett.* **2000**, *2*, 343. (d) Hong, W. P.; Lee, K. -J. *Synthesis* **2006**, 963. [15] Amri, H.; El Gaied, M. M.; Ayed, T. B.; Villieras, J. *Tetrahedron Lett.* **1992**, *33*, 7345.

- [16] Hong, W. P.; Lee, K. -J. Synthesis 2005, 33.
- [17] Horn, C. R.; Perez, M. Synlett 2005, 1480.
- [18] Kaye, P. T.; Nocanda, X. W. Synthesis 2001, 2389.
- [19] Cha, M. J.; Song, Y. S.; Lee, K. -J. Bull. Korean. Chem. Soc.
- 2006, 27, 1900. EI mass spectral data for 4a: m/z (%) 450 (M<sup>+</sup>, 6), 419

(20), 387 (25), 225 (32), 193 (100), 133 (47) and  $4c\colon m/z$  (%) No  $M^{+},$ 

461 (18), 459 (18), 334 (8), 332 (7), 320 (13), 318 (12), 293 (58), 255 (40), 253 (50), 205 (42), 174 (88), 147 (40), 115 (100).

[20] Reid, E. E. In Organic Chemistry of Bivalent Sulfur, Chemical Publishing Co. Inc., New York, 1958, Vol 1.

[21a] Cullis, C. F.; Hopton, J. D.; Trimm, D. L. J. Appl. Chem. **1968**, 18, 330. (b) Tasadaque, S.; Shah, A.; Khan, M.; Fecker, M.; Voelter, W. Tetrahedron Lett. **2003**, 44, 6789.

[22] Park, J. B.; Ko, S. H.; Kim, B. G.; Hong, W. P.; Lee, K. -J. Bull. Korean. Chem. Soc. 2004, 25, 27.