Scheme 2




| $\mathbf{1 , 2 , 3}, \mathbf{4}$ | $\mathbf{a}$ | $\mathbf{b}$ | $\mathbf{c}$ | $\mathbf{d}$ | $\mathbf{e}$ | $\mathbf{f}$ | $\mathbf{g}$ | $\mathbf{h}$ | $\mathbf{i}$ | $\mathbf{j}$ | $\mathbf{k}$ | $\mathbf{l}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X | F | Cl | Br | $\mathrm{NO}_{2}$ | F | $\mathrm{NO}_{2}$ | Cl | Cl | Cl | F | Br | Cl |
| Y | H | H | H | H | $5-\mathrm{MeO}$ | $5-\mathrm{MeO}$ | $3-\mathrm{Cl}$ | $5-\mathrm{Cl}$ | $6-\mathrm{Cl}$ | $4,5-\mathrm{F}_{2}$ | $4,5-\mathrm{OCH}_{2} \mathrm{O}$ | $5-\mathrm{NO}_{2}$ |


| $\mathbf{5}$ | $\mathbf{a}$ | $\mathbf{b}$ | $\mathbf{c}$ | $\mathbf{d}$ | $\mathbf{e}$ | $\mathbf{f}$ | $\mathbf{g}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Y | H | $6-\mathrm{MeO}$ | $8-\mathrm{Cl}$ | $6-\mathrm{Cl}$ | $5-\mathrm{Cl}$ | $6,7-\mathrm{F}_{2}$ | $6,7-\mathrm{OCH}_{2} \mathrm{O}$ |

Table 1
3-Carbomethoxy-2H-thiochromenes 5a-g

| Entry | Reactant | Reaction Time | Product | Yield (\%) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathbf{3 a}$ | 1.5 h | $\mathbf{5 a}$ | 41 |
| 2 | $\mathbf{3 b}$ | 3 h | $\mathbf{5 a}$ | 26 |
| 3 | $\mathbf{3 c}$ | 1.5 h | $\mathbf{5 a}$ | 30 |
| 4 | $\mathbf{3 d}$ | 10 min | $\mathbf{5 a}$ | 43 |
| 5 | $\mathbf{3 e}$ | 2.5 h | $\mathbf{5 b}$ | 34 |
| 6 | $\mathbf{3 f}$ | 1 h | $\mathbf{5 b}$ | 37 |
| 7 | $\mathbf{3 g}$ | 30 min | $\mathbf{5 c}$ | 28 |
| 8 | $\mathbf{3 h}$ | 2 h | $\mathbf{5 d}$ | 22 |
| 9 | $\mathbf{3 i}$ | 36 h | $\mathbf{5 e}$ | 23 |
| 10 | $\mathbf{3 j}$ | 10 min | $\mathbf{5 f}$ | 20 |
| 11 | $\mathbf{3 k}$ | 2.5 h | $\mathbf{5 g}$ | 23 |

Accordingly, BH acetates 3a-l were synthesized as starting materials whose preparation has been previously described [19], except for $\mathbf{3 e}, \mathbf{3 f}, \mathbf{3 h}, \mathbf{3 i}$ and $\mathbf{3 k}$. Treatment of BH acetate 3 a with 1.5 molar equivalents of sodium sulfide in aqueous dimethyl sulfoxide at $40{ }^{\circ} \mathrm{C}$ for 1.5 hours produced the desired 3-carbomethoxy- 2 H -
thiochromene 5 a in a $41 \%$ yield after separation by column chromatography on silica gel. The spectral data of 5a were identical to reported infrared, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectral values [18]. This result led to the examination of the effect of the leaving group of the aromatic moiety. Table 1 summarizes the results of the synthesis of 3-carbomethoxy- 2 H -thiochromenes. When the reactions of BH acetates bearing halogen and nitro leaving groups were conducted under similar reaction conditions, 3d containing a nitro group gave an acceptable yield (43\%) of $\mathbf{5 a}$. Meanwhile, in the cases of $\mathbf{3 b}, \mathbf{c}$ with chloro and bromo groups, $\mathbf{5 a}$ was obtained in relatively lower yields ( $26 \%$ and $30 \%$, respectively). Also, substituents ortho and/or para to the leaving group in the aromatic ring influenced the reaction. In general, the requirement of the presence of certain electron-withdrawing groups such as a halogen or nitro group ortho and/or para to the leaving group limits the generality of the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction by the addition-elimination mechanism. It did not work well with halogen-substituted compounds (Entries 7-10). Moreover, the reaction of nitro-substituted BH acetate 31 was not successful and only complex inseparable
decomposition mixtures were obtained. However, the reactions of electron-donating methoxy-substituted BH acetates $\mathbf{3 e}$ and $\mathbf{3 f}$ led to relatively reasonable yields (34\% and $\mathbf{3 7 \%}$, respectively) of $\mathbf{5 b}$, as shown in Table 1 (Entries 5 and 6). However, the BH acetate $\mathbf{3 k}$ containing a methylenedioxy group produced a lower yield (23\%) of 5 g .

Although the exact reaction mechanism has not yet been confirmed, we suggest that the conversion of $\mathbf{3}$ into $\mathbf{5}$ would appear to proceed through an $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ nucleophilic substitution reaction with sulfide ion followed by the formation of diallyl disulfides 4 by autooxidation and a subsequent intramolecular $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ nucleophilic substitution reaction of allyl thiolate ion, which is generated from diallyl disulfide 4 by the attack of the sulfide ion. The easy oxidation of thiols on exposure to air is well known [20]. It is also known that autooxidation of thiols is accelerated by bases [21]. For example, in the course of the synthesis of $\mathbf{5 b}$, careful examination of the reaction progress by thin layer chromatography (TLC) found that all starting BH acetate $\mathbf{3 f}$ was converted to the diallyl disulfide $\mathbf{4 f}$ in a $66 \%$ yield within 5 minutes. Compared with the reference sample prepared according to the literature method [19], both products were identical. In addition, treatment of $\mathbf{4 f}$ with 1.5 molar equivalents of sodium sulfide in aqueous dimethyl sulfoxide at $40{ }^{\circ} \mathrm{C}$ for 1 hour gave the expected thiochromene $\mathbf{5 b}$ in $52 \%$ yield. Also, several diallyl disulfides $\mathbf{4 a}, \mathbf{4 c}$, and $\mathbf{4 d}$ produced the 3-carbomethoxy-2H-thiochromene $\mathbf{5 a}$ in $59-71 \%$ yields under the same reaction conditions (Scheme 2).

In summary, we developed a new strategy for the synthesis of 3-carbomethoxy-2H-thiochromenes from easily accessible BH acetates and sodium sulfide. Although satisfactory results in product yields were not obtained, the efficacy of BH chemistry in heterocycle synthesis was demonstrated.

## EXPERIMENTAL

Silica gel 60 (70-230 mesh ASTM) used for column chromatography was supplied by E. Merck. Analytical thin layer chromatography (TLC) was performed on Merck silica gel 60 $\mathrm{F}_{254}$ TLC plates. Melting points were measured by an Electrothermal melting point apparatus and were uncorrected. Microanalysis was obtained using a Thermo Electron Corporation Flash EA 1112 element analyzer. Infrared spectra were recorded with a Nicolet Magna 550 FTIR spectrometer. Electron impact (EI) mass spectra were obtained using a Jeol SX102 mass spectrometer. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Gemini 300 spectrometer using deuteriochloroform. All chemical shifts are reported in parts per million relative to tetramethylsilane. The coupling constants ( $J$ ) are expressed in Hertz.

The known BH adducts $\mathbf{2 a - c}, \mathbf{2 f}, \mathbf{2 g}, \mathbf{2 j}, \mathbf{2 l}$ [19], 2d [22], BH acetates $\mathbf{3 a - c}, \mathbf{3 g}, \mathbf{3 j}$ [19], $\mathbf{3 d}$ [22] and disulfides $\mathbf{4 a}, \mathbf{4 c}$ [19] were prepared according to literature procedures.

Methyl 2-[(2-Fluoro-5-methoxyphenyl)(hydroxy)methyl]acrylate (2e). 1,4-Diazabicyclo[2,2,2]octane (DABCO) ( 0.22 g , 2 mmoles), triethanolamine ( $0.24 \mathrm{~g}, 1.6 \mathrm{mmole}$ ) and methyl acrylate ( $0.52 \mathrm{~g}, 6$ mmoles) were added to a stirred solution of 2-fluoro-5-methoxybenzaldehyde ( $\mathbf{1 e}, 0.31 \mathrm{~g}, 2$ mmoles) at room temperature. After stirring for 48 hours the reaction mixture was diluted with water $(20 \mathrm{ml})$ and extracted with dichloromethane $(3 \times 50 \mathrm{ml})$. The combined organic layers were dried over anhydrous magnesium sulfate, and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel that was eluted with hexane/ethyl acetate (5:1) to produce 0.45 g ( $94 \%$ ) of 2 e as a white solid: $\mathrm{mp} 51-52{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3502, 1709, 1636, 1498, $1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (deuteriochloroform): $\delta 3.30(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H})$, 6.76-6.81 (m, 1H), 6.93-7.02 (m, 2H). Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{FO}_{4}$ : C, $60.00 ; \mathrm{H}, 5.45$. Found: C, 59.72; H, 5.63.
Methyl 2-[(2,5-Dichlorophenyl)(hydroxy)methyl]acrylate (2h). DABCO ( $0.22 \mathrm{~g}, 2$ mmoles), triethanolamine $(0.24 \mathrm{~g}, 1.6$ mmole) and methyl acrylate ( $0.52 \mathrm{~g}, 6$ mmoles) were added to a stirred solution of 2,5 -dichlorobenzaldehyde $(\mathbf{1 h}, 0.35 \mathrm{~g}, 2$ mmoles) at room temperature. After stirring for 22 hours, the aforementioned procedure was followed to produce $\mathbf{2 h}$. Yield: 0.51 g ( $97 \%$ ); colorless oil; ir (dichloromethane): 3437, 1720, $1631,1462,1440 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (deuteriochloroform): $\delta 3.30$ (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3}$ : C, 50.60 ; H, 3.86. Found: C, 50.71; H, 3.93.

Methyl 2-[(2,6-Dichlorophenyl)(hydroxy)methyl]acrylate (2i). DABCO ( $0.22 \mathrm{~g}, 2$ mmoles), triethanolamine $(0.24 \mathrm{~g}, 1.6$ mmole), and methyl acrylate ( $0.52 \mathrm{~g}, 6$ mmoles) were added to a stirred solution of 2,6 -dichlorobenzaldehyde ( $\mathbf{1 i}, 0.35 \mathrm{~g}, 2$ mmoles) at room temperature. After stirring for 27 hours, the aforementioned procedure was followed to produce 2i. Yield: $0.31 \mathrm{~g}(60 \%)$; white solid; $\mathrm{mp}: 74.5-75.5^{\circ} \mathrm{C}$; ir (potassium bromide): $3500,1706,1634,1577,1560,1434 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (deuteriochloroform): $\delta 3.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, $5.78(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=$ 8.5 and $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H})$. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3}: \mathrm{C}, 50.60 ; \mathrm{H}, 3.86$. Found: C, 50.84; H, 4.01.

Methyl 2-[(2-Bromo-4,5-methylenedioxy)(hydroxy)meth-yll-acrylate ( $\mathbf{2 k}$ ). DABCO $(0.22 \mathrm{~g}, 2$ mmoles), triethanolamine ( $0.24 \mathrm{~g}, 1.6 \mathrm{mmole}$ ) and methyl acrylate ( $0.52 \mathrm{~g}, 6$ mmoles) were added to a stirred solution of 2-bromo-4,5-methlenedioxybenzaldehyde ( $\mathbf{1 k}, 0.46 \mathrm{~g}, 2$ mmoles) at room temperature. After stirring for 15 days, the aforementioned procedure was followed to produce $2 \mathbf{k}$. Yield: $0.25 \mathrm{~g}(40 \%)$; colorless oil; ir (dichloromethane): 3434, 1721, 1629, 1502, $1478 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (deuteriochloroform): $\delta 3.14(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $5.62(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H})$, $7.00(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrO}_{5}: \mathrm{C}$, 45.74; H, 3.52. Found: C, 45.90; H, 3.77.

Preparation of BH Acetates 3: General Procedure. Acetic anhydride ( 3 mmoles ) and 4-(dimethylamino)pyridine ( 0.4 mmoles) were added to a stirred solution of BH adduct 2 (2 mmoles) in dichloromethane ( 5 ml ) at room temperature. After stirring for $10-40$ minutes the reaction mixture was diluted with water ( 20 ml ) and extracted with dichloromethane ( $3 \times 50 \mathrm{ml}$ ). The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The
resulting mixture was chromatographed on silica gel and eluted with hexane/ethyl acetate (3:1) to produce $\mathbf{3}$ as an oil or solid.
The physical and spectral data of $\mathbf{3}$ prepared by this general method follows.

Methyl 2-[Acetoxy(2-fluoro-5-methoxyphenyl)methyl]acrylate (3e). Reaction time: 10 minutes; white solid; yield: $83 \%$; mp: $53{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 1750, 1728, 1635, 1596, 1501, $1227 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (deuteriochloroform): $\delta 2.12$ (s, $3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.78-$ $6.85(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H})$, 6.95-7.02 (m, 1H). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{FO}_{5}: \mathrm{C}, 59.57$; H, 5.36. Found: C, 59.68; H, 5.22.

Methyl 2-[Acetoxy (5-methoxy-2-nitrophenyl)methyl]acrylate (3f). Reaction time: 30 minutes; white solid; yield: $89 \%$; mp: $93.5-94.5^{\circ} \mathrm{C}$; ir (potassium bromide): 1747,1716 , 1638, 1614, 1581, 1515, $1231 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (deuteriochloroform): $\delta 2.15(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H})$, $6.41(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=9.2$ and $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{7}: \mathrm{C}, 54.37$; H, 4.89; N, 4.53. Found: C, 54.49 ; H, 4.78; N, 4.84.

Methyl 2-[Acetoxy(2,5-dichlorophenyl)methyl]acrylate (3h). Reaction time: 25 minutes; white solid; yield: $93 \%$; mp: $60-61{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 1748, 1711, 1635, 1465 , 1440, 1295, $1225 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (deuteriochloroform): $\delta 2.14$ (s, $3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 7.24$ (dd, $J=8.5$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.32(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H})$. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{4}: \mathrm{C}, 51.51 ; \mathrm{H}, 3.99$. Found: C, 51.36; H, 3.85.

Methyl 2-[Acetoxy(2,6-dichlorophenyl)methyl]acrylate (3i). Reaction time: 30 minutes; colorless oil; yield: $87 \%$; ir (dichloromethane): 1747, 1727, 1580, 1563, 1436, $1229 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (deuteriochloroform): $\delta 2.13$ (s, 3H), 3.75 (s, 3H), 5.73 ( s , $1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=8.7$ and $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.33$ (m, 3H). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{4}$ : C, 51.51; H, 3.99. Found: C, 51.63; H, 3.75 .

Methyl 2-[Acetoxy(2-bromo-4,5-methylenedioxy)methyl]acrylate (3k). Reaction time: 40 minutes; colorless oil; yield: $86 \%$; ir (dichloromethane): $1740,1712,1636,1504,1484,1233$ $\mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (deuteriochloroform): $\delta 2.12(\mathrm{~s}, 3 \mathrm{H}), 3.76$ (s, $3 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.91$ (s, 1H), 7.03 (s, 1H). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO}_{6}$ : C, 47.08; H, 3.67. Found: C, 47.22; H, 3.81.

Preparation of 3-Carbomethoxy-2H-thiochromenes 5: General Procedure. Sodium sulfide ( 3 mmoles ) was added to a stirred solution of BH acetate $\mathbf{3}$ ( 2 mmoles ) in aqueous dimethyl sulfoxide ( $7.7 \mathrm{ml}, \mathrm{v} / \mathrm{v}=10 / 1$ ) at $40^{\circ} \mathrm{C}$. After stirring for the time indicated in Table 1, the reaction mixture was diluted with water $(20 \mathrm{ml})$ and extracted with diethyl ether $(3 \times 50 \mathrm{ml})$. The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel and eluted with hexane/ethyl acetate ( $10: 1$ ) to produce 5 as an oil or solid.

The physical and spectral data of $\mathbf{5}$ prepared by this general method follow.

3-Carbomethoxy-2H-thiochromene (5a). [18] Compound $5 \mathbf{5}$ was obtained from BH acetates $\mathbf{3 a - d}$ in 41, 26, 30 and $43 \%$ yields, respectively. Yellow solid; $\mathrm{mp} 34.5-35.5{ }^{\circ} \mathrm{C}$; ir (potassium bromide): $1707,1631,1586,1558,1436,1239 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (deuteriochloroform): $\delta 3.74$ (d, $J=1.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.85 $(\mathrm{s}, 3 \mathrm{H}), 7.10-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (deuteriochloroform): $\delta 24.0,52.2,123.0,125.8,127.1,130.2,130.6$, 131.3, 134.0, 137.4, 166.4.

3-Carbomethoxy-6-methoxy-2H-thiochromene (5b). Compound 5b was obtained from BH acetates $\mathbf{3 e}$ and $\mathbf{3 f}$ in yields of $34 \%$ and $37 \%$, respectively. Yellow solid; mp 38-39 ${ }^{\circ} \mathrm{C}$; ir (potassium bromide): 1706, 1631, 1595, 1560, $1235 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (deuteriochloroform): $\delta 3.70$ (d, $J=1.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.80 (s, 3H), 3.84 (s, 3H), 6.79-6.83 (m, 2H), 7.18-7.21 (m, 1H), 7.52 (s, 1H); ${ }^{13} \mathrm{C}$ NMR (deuteriochloroform): $\delta 24.2,52.2,55.4$, $115.6,116.3,124.0,124.5,128.0,132.3,137.4,157.8,166.3$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 61.00 ; \mathrm{H}, 5.12 ; \mathrm{S}, 13.57$. Found: C, 60.77 ; H, 5.02; S, 13.74.

3-Carbomethoxy-8-chloro-2H-thiochromene (5c). Yellow solid; yield: $28 \%$; mp: $88-89^{\circ} \mathrm{C}$; ir (potassium bromide): 1698 , 1645, 1439, 1415, 1250, $1220 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (deuteriochloroform): $\delta 3.78$ (d, $2 \mathrm{H}, J=0.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), $3.86(\mathrm{~s}, 3 \mathrm{H}), 7.06(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ (dd, $J=7.6$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=7.6$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (deuteriochloroform): $\delta$ 24.2, 52.4, 123.2, 125.7, 128.8, 130.9, 131.7, 132.8, 133.9, 137.0, 166.0. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{ClO}_{2} \mathrm{~S}: \mathrm{C}, 54.89 ; \mathrm{H}, 3.77$; S, 13.32. Found: C, 54.71 ; H, 3.75; S, 13.18.

3-Carbomethoxy-6-chloro-2H-thiochromene (5d). Yellow solid; yield: $22 \%$; mp: $75-76{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 1705 , 1631, 1464, 1435, $1235 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (deuteriochloroform): $\delta$ 3.73 (d, $J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 7.15-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.48$ (s, 1H); ${ }^{13} \mathrm{C}$ NMR (deuteriochloroform): $\delta 23.9,52.3,124.3$, 128.1, 129.8, 129.9, 131.2, 132.3, 132.7, 136.1, 166.0. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{ClO}_{2} \mathrm{~S}: \mathrm{C}, 54.89 ; \mathrm{H}, 3.77$; S, 13.32. Found: C, 54.82; H, 3.51; S, 13.54.

3-Carbomethoxy-5-chloro-2H-thiochromene (5e). Yellow oil; yield: $23 \%$; ir (dichloromethane): 1712, 1629, 1591, 1579, 1433, $1240 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (deuteriochloroform): $\delta 3.69$ (d, $J=$ $0.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 7.09-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (deuteriochloroform): $\delta$ 23.6, 52.4, 124.4, 125.7, 126.8, 129.2, 130.2, 133.2, 135.4, 136.9, 166.1. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{ClO}_{2} \mathrm{~S}: \mathrm{C}, 54.89$; H, 3.77; S, 13.32. Found: C, $54.68 ; \mathrm{H}$, 3.97; S, 13.14.

3-Carbomethoxy-6,7-difluoro-2H-thiochromene (5f). Yellow solid; yield: $20 \%$; mp: $76-77^{\circ} \mathrm{C}$; ir (potassium bromide): 1695, 1582, 1490, 1438, $1253 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (deuteriochloroform): $\delta 3.72(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 7.04-7.13(\mathrm{~m}, 2 \mathrm{H})$, $7.45(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (deuteriochloroform): $\delta 23.8,52.4$, $115.8,116.1,118.7,118.9,123.5,128.0,135.6,149.0,149.1$, 150.1, 152.3, 166.0. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 54.54$; H , 3.33; S, 13.24. Found: C, 54.37; H, 3.43; S, 13.38.

3-Carbomethoxy-6,7-methylenedioxy-2H-thiochromene $\mathbf{( 5 g})$. Yellow solid; yield: $23 \%$; mp: $103-104{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 1692, 1609, 1584, 1499, 1481, $1242 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (deuteriochloroform): $\delta 3.68$ (d, $J=0.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.83 (s, 3 H ), $5.97(\mathrm{~s}, 2 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (deuteriochloroform): $\delta 24.1,52.1,101.5,107.6,110.2,120.4$, 125.4, 127.9, 137.3, 146.2, 149.1, 166.5. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 57.59 ; \mathrm{H}, 4.03 ; \mathrm{S}, 12.81$. Found: C, $57.78 ; \mathrm{H}$, 4.26; S, 12.57.

## Preparation of Diallyl Disulfides 4.

## Method A.

(2Z,2Z)-Dimethyl 2,2́-Disulfanediylbis-(methylene)bis[3-(2-nitrophenyl)acrylate] (4d). Sodium sulfide ( $0.23 \mathrm{~g}, 3$ mmoles) was added to a stirred solution of BH acetate $\mathbf{3 d}$ ( 0.56 $\mathrm{g}, 2$ mmoles) in aqueous dimethyl sulfoxide ( $7.7 \mathrm{ml}, \mathrm{v} / \mathrm{v}=10 / 1$ ) at $40^{\circ} \mathrm{C}$. After stirring for 5 minutes, the reaction mixture was diluted with water $(20 \mathrm{ml})$ and extracted with diethyl ether $(3 \times$
$50 \mathrm{ml})$. The combined organic layers were dried over anhydrous magnesium sulfate, and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel and eluted with hexane/ethyl acetate (3:1) to produce $0.31 \mathrm{~g}(61 \%)$ of $\mathbf{4 d}$ as a white solid: $\mathrm{mp}: 142-143{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 1710, 1604, 1530, 1435, 1353, 1272, $1259 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (deuteriochloroform): $\delta 3.43(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 7.47-7.57$ (m, $2 \mathrm{H}), 7.66-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 8.13-8.17(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (deuteriochloroform): $\delta 30.0,52.4,125.0,130.0,130.3$, $130.7,131.1,133.8,137.8,147.4,166.7$; ms: m/z (\%) No M ${ }^{+}$, 486 (21), 337 (17), 250 (100), 218 (82), 188 (59), 164 (58). Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$ : C, $52.37 ; \mathrm{H}, 4.00 ; \mathrm{N}, 5.55 ; \mathrm{S}$, 12.71. Found: C, $52.52 ; \mathrm{H}, 3.86$; N, $5.63 ; \mathrm{S}, 12.54$.
(2Z,2Z)-Dimethyl 2,2'-Disulfanediylbis(methylene)bis[3-(5-methoxy-2-nitrophenyl)acrylate] (4f). Sodium sulfide (0.23 $\mathrm{g}, 3 \mathrm{mmoles}$ ) was added to a stirred solution of BH acetate $\mathbf{3 f}$ ( $0.62 \mathrm{~g}, 2$ mmoles) in aqueous dimethyl sulfoxide $(7.7 \mathrm{ml}, \mathrm{v} / \mathrm{v}=$ $10 / 1$ ) at $40^{\circ} \mathrm{C}$. After stirring for 5 minutes, the aforementioned procedure was followed to produce $0.37 \mathrm{~g}(66 \%)$ of $\mathbf{4 f}$ as a white solid: mp: $165-166{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 1713, 1600 , 1585, 1508, $1242 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (deuteriochloroform): $\delta 3.45$ ( s , 2H), $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 6.93(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (dd, $J=9.2$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.97(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, 1 H ); ${ }^{13} \mathrm{C}$ NMR (deuteriochloroform): $\delta 30.2,52.4,56.2,115.2$, 127.6, 129.7, 133.6, 138.8, 138.9, 140.2, 163.5, 166.7; ms: m/z (\%) No M ${ }^{+}, 472$ (2), 426 (42), 252 (19), 220 (98), 188 (100), 134 (100), 115 (54). Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}_{2}$ : C, 51.06; H, 4.28; N, 4.96; S, 11.36. Found: C, 51.27; H, 4.20; N, 4.73; S, 11.55.

## Method B [19].

(2Z,2${ }^{\prime}$ Z)-Dimethyl 2,2'-Disulfanediylbis(methylene)bis[3-(2-nitrophenyl)acrylate] (4d). Thiolacetic acid ( $0.17 \mathrm{~g}, 2.2$ mmoles) and triethylamine ( $0.24 \mathrm{~g}, 2.4$ mmoles) were added to a stirred solution of $\mathbf{3 d}$ ( $0.56 \mathrm{~g}, 2 \mathrm{mmoles}$ ) in dichloromethane ( 5 $\mathrm{ml})$ at room temperature. After stirring for 30 minutes, the reaction mixture was diluted with water ( 5 ml ) and extracted with dichloromethane ( $2 \times 10 \mathrm{ml}$ ). The combined organic layers were dried over anhydrous magnesium sulfate, and the solvent was evaporated in vacuo. The resulting crude product, methyl (Z)-2-(acetylthiomethyl)-3-(2-nitrophenyl)acrylate, was dissolved in $50 \%$ aqueous acetone ( 10 ml ), and $\mathrm{NaN}_{3}(0.20 \mathrm{~g}, 3$ mmoles) was added and stirred at reflux temperature for 4 hours. The reaction mixture was concentrated under reduced pressure, and the residue was extracted with dichloromethane $(2 \times 10 \mathrm{ml})$. The organic layers were dried over anhydrous magnesium sulfate and the solvent was evaporated in vacuo. The reaction mixture was chromatographed on silica gel and eluted with hexane/ethyl acetate ( $10: 1$ ) to produce $0.31 \mathrm{~g}(62 \%)$ of $\mathbf{4 d}$ as a white solid. The melting point and spectral data were identical to those of the $\mathbf{4 d}$ obtained from method A.
(2Z,2Z)-Dimethyl 2,2́-Disulfanediylbis(methylene)bis[3-(5-methoxy-2-nitrophenyl)acrylate] (4f). Thiolacetic acid $(0.17 \mathrm{~g}, 2.2$ mmoles) and triethylamine ( $0.24 \mathrm{~g}, 2.4$ mmoles) were added to a stirred solution of $3 \mathrm{f}(0.62 \mathrm{~g}, 2$ mmoles) in dichloromethane ( 5 ml ) at room temperature. After stirring for 30 minutes, the reaction mixture was diluted with water ( 5 ml ) and extracted with dichloromethane $(2 \times 10 \mathrm{ml})$. The combined organic layers were dried over anhydrous magnesium sulfate, and the solvent was evaporated in vacuo. The resulting crude product, methyl (Z)-2-(acetylthiomethyl)-3-(2-nitrophenyl)acrylate, was dissolved in $50 \%$ aqueous acetone ( 10 ml ), and
$\mathrm{NaN}_{3}(0.20 \mathrm{~g}, 3 \mathrm{mmoles})$ was added and stirred at reflux temperature for 4 hours. The reaction mixture was concentrated under reduced pressure, and the residue was extracted with dichloromethane ( $2 \times 10 \mathrm{ml}$ ). The organic layers were dried over anhydrous magnesium sulfate, and the solvent was evaporated in vacuo. The reaction mixture was chromatographed on silica gel and eluted with hexane/ethyl acetate ( $10: 1$ ) to produce 0.41 g ( $72 \%$ ) of $\mathbf{4 f}$ as a white solid. The melting point and spectral data were identical to those of the $\mathbf{4 f}$ obtained from method A.

Synthesis of Thiochromenes 5 from Diallyl Disulfide 4: General Procedure. Sodium sulfide ( 3 mmoles ) was added to a stirred solution of diallyl disulfides $\mathbf{4 a}, \mathbf{c}, \mathbf{d}, \mathbf{f}$ ( 2 mmoles) in aqueous dimethyl sulfoxide ( $11 \mathrm{ml}, \mathrm{v} / \mathrm{v}=10 / 1$ ) at $40^{\circ} \mathrm{C}$. After stirring for 20 minutes to 1.5 hours, the reaction mixture was diluted with water $(20 \mathrm{ml})$ and extracted with diethyl ether ( $3 \times$ $50 \mathrm{ml})$. The combined organic layers were dried over anhydrous magnesium sulfate, and the solvent was evaporated in vacuo. The resulting mixture was chromatographed on silica gel and eluted with hexane/ethyl acetate (10:1) to produce $\mathbf{5 a}$ or $\mathbf{5 b}$ as a solid.
Spectroscopic data were identical to the 5a or $\mathbf{5 b}$ obtained from the one-pot procedure. For $\mathbf{4 a}$, reaction time: 1.5 hours; yield: $60 \%$. For $\mathbf{4 c}$, reaction time: 1 hour, yield: $58 \%$. For 4d, reaction time: 20 minutes, yield: $71 \%$. For $\mathbf{4 f}$, reaction time: 1 hour, yield: 52\%.

Acknowledgement. This work was supported by the Research Fund of Hanyang University (HY-2006-I).

## REFERENCES AND NOTES

* Author to whom correspondence should be addressed.
[1a] Rogier, D. J. Jr.; Carter, J. S.; Talley, J. J. WO 2001049675 , 2001; Chem. Abstr. 2001, 135, 107252. [b] Carter, J. S.; Devadas, B.; Talley, J. J.; Brown, D. L.; Graneto, M. J.; Rogier, D. J. Jr.; Nagarajan, S. R.; Korte, C. E.; Bertenshaw, S. R.; Obukowicz, M. G. WO 2000023433, 2000; Chem. Abstr. 2000, 132, 293665.
[2] Kaye, P. T.; Musa, M. A.; Nchinda, A. T.; Nocanda, X. W. Synth. Commun. 2004, 34, 2575.
[3] Brown, M. J.; Carter, P. S.; Fenwick, A. E.; Fosberry, A. P.; Hamprecht, D. W.; Hibbs, M. J.; Jarvest, R. L.; Mensah, L.; Milner, P. H.; O’Hanlon, P. J.; Pope, A. J.; Richardson, C. M.; West, A.; Witty, D. R. Bioorg. Med. Chem. Lett. 2002, 12, 3171.
[4] Quaglia, W.; Pigini, M.; Piergentili, A.; Giannella, M.; Gentili, F.; Marucci, G.; Carrieri, A.; Carotti, A.; Poggesi, E.; Leonardi, A.; Melchiorre, C. J. Med. Chem. 2002, 45, 367.
[5] van Vliet, L. A.; Rodenhuis, N.; Dijkstra, D.; Wikstrom, H.; Pugsley, T. A.; Serpa, K. A.; Meltzer, L. T.; Heffner, T. G.; Wise, L. D.; Lajiness, M. E.; Huff, R. M.; Svensson, K.; Sundell, S.; Lundmark, M. J. Med. Chem. 2000, 43, 2871.
[6a] Berlin, K. D.; Benbrook, D. M.; Nelson, E. C. U. S. Patent 6586460, 2003; Chem. Abstr. 2004, 139, 69392. [b] Sugita, Y.; Hosoya, H.; Terasawa, K.; Yokoe, I.; Fujisawa, S.; Sakagami, H. Anticancer Res. 2001, 21, 2629.
[7a] Tércio, J.; Ferreira, B.; Catani, V.; Comasseto, J. V. Synthesis 1987, 149. [b] Ingall, A. H. In Comprehensive Heterocyclic Chemistry, Boulton, A. J.; Mckillop, A. Eds, Pergamon Press, Oxford, 1984, Vol 3, p 934.
[8] Kobayashi, K.; Konishi, H.; Kitamura, T.; Morikawa, O.; Nakahashi, R. J. Chem. Soc., Perkin Trans. 1 1999, 1547.
[9a] Wang, W.; Li, H.; Wang, J.; Zu, L. J. Am. Chem. Soc. 2006, 128, 10354. [b] Rios, R.; Sunden, H.; Ibrahem, I.; Zhao, G. -L.; Eriksson, L.; Córdova, A. Tetrahedron Lett. 2006, 47, 8547.
[10] Arnoldi, A.; Carughi, M. Synthesis 1988, 155.
[11a] Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653.
[b] Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001. [c] Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627. [d] Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811. [e] Ciganek, E. In Organic Reactions, Paquette, L. A. Ed, Wiley, New York, 1997, Vol. 51, pp 201-350.
[12a] Chung, Y. M.; Lee, H. J.; Hwang, S. S.; Kim, J. N. Bull. Korean Chem. Soc. 2001, 22, 799. (b) Kim, J. N.; Lee, H. J.; Lee, K. Y.; Kim, S. K. Tetrahedron Lett. 2001, 42, 3737. (c) Kim, J. N.; Chung, Y. M.; Im, Y. J. Tetrahedron Lett. 2002, 43, 6209.
[13a] Kim, J. N.; Kim, H. S.; Gong, H. G.; Chung, Y. M. Tetrahedron Lett. 2001, 42, 8341. (b) Yi, H. -W.; Park, H. W.; Song, Y. S.; Lee, K. -J. Synthesis 2006, 1953.
[14a] Basavaiah, D.; Reddy, R. M.; Kumaragurubaran, N.; Sharada, D. S. Tetrahedron 2002, 58, 3693. (b) Familoni, O. B.; Kaye, P. T.; Klass, P. J. Chem. Commun. 1998, 24, 2563. (c) Kim, J. N.; Lee, K. Y.; Kim, H. S.; Kim, T. Y. Org. Lett. 2000, 2, 343. (d) Hong, W. P.; Lee, K. -J. Synthesis 2006, 963.
[15] Amri, H.; El Gaied, M. M.; Ayed, T. B.; Villieras, J. Tetrahedron Lett. 1992, 33, 7345.
[16] Hong, W. P.; Lee, K. -J. Synthesis 2005, 33.
[17] Horn, C. R.; Perez, M. Synlett 2005, 1480.
[18] Kaye, P. T.; Nocanda, X. W. Synthesis 2001, 2389.
[19] Cha, M. J.; Song, Y. S.; Lee, K. -J. Bull. Korean. Chem. Soc. 2006, 27, 1900. EI mass spectral data for 4a: m/z (\%) $450\left(\mathrm{M}^{+}, 6\right), 419$ (20), 387 (25), 225 (32), 193 (100), 133 (47) and 4c: m/z (\%) No M ${ }^{+}$, 461 (18), 459 (18), 334 (8), 332 (7), 320 (13), 318 (12), 293 (58), 255 (40), 253 (50), 205 (42), 174 (88), 147 (40), 115 (100).
[20] Reid, E. E. In Organic Chemistry of Bivalent Sulfur, Chemical Publishing Co. Inc., New York, 1958, Vol 1.
[21a] Cullis, C. F.; Hopton, J. D.; Trimm, D. L. J. Appl. Chem. 1968, 18, 330. (b) Tasadaque, S.; Shah, A.; Khan, M.; Fecker, M.; Voelter, W. Tetrahedron Lett. 2003, 44, 6789.
[22] Park, J. B.; Ko, S. H.; Kim, B. G.; Hong, W. P.; Lee, K. -J. Bull. Korean. Chem. Soc. 2004, 25, 27.

